
Requirements:
Requirement Elicitation:

 We performed our requirements elicitation by reading through the assessment document and

then having a brainstorming session as a group to create a list of well-defined questions that we felt

were pivotal in clarifying several outstanding ambiguities. Once we had created this list, we then

interviewed the customer while making a note of any and all useful information that came to light.

Through this method, we managed to clear up what we felt were the majority of uncertainties.

 There are various reasons why a Statement of Requirements is helpful during the design of a
software, but the most major reason is to help guide the project from square one. With the direction
provided by the Statement of Requirements, the project is far less likely to go off track. A secondary
reason for a detailed Statement of Requirements is to have something clear to show to stockholders,
so as to remove ambiguity further by receiving their confirmation about what it is they’re looking for.
The need for a well-defined set of requirements is supported by the 1995 CHAOS report by the
Standish Group [1], which reported that 13.1% of project failures were caused by incomplete
requirements, the biggest risk to projects at that time. This same report also said that there are 94
project restarts for every 100 projects [1], which truly shows the magnitude of the issue of project
failure.

As stated in, the scenario in which one must deal with a large number of requirements makes it so

“having a well-understood, clearly documented structure for the

whole requirements set is essential to the effective management of complexity.” [2]

In order to ensure this, we have made efforts to make our Statement of Requirements as easily
readable as possible. Each class of requirement is presented in a separate table which is colour-
coded in order to stand out. Each row is headed by the description of the requirement, as this is the
most concise human-readable way of differentiating meaningfully between one requirement and
another. After this, we have the fit criterion to define when the requirement can be deemed to be
fulfilled. Then we have the environmental assumptions and risks, which are always started with
assumptions and finished with risks. If there are no assumptions or no risks, mention of them is
omitted. Finally is the Reference No for use in further documentation. Each Reference No is given a
meaningful name such as to make them more understandable when used in text.

Statement of Requirements:

Functional Requirements:

Description

Fit Criterion

Environmental
Assumptions and
Risks

Reference No.

Must provide a UI

All information user
requires should be
available through GUI

Assumes user
requires all information
be explicitly presented.
Risk of presenting too
much information at
one time

Func.UI

Must provide some
means for user to
interact with UI

Game will be designed
to take both keyboard
and mouse input

Risk of system being
difficult to use if user is
disabled such that
they cannot easily use
a keyboard or mouse

Func.Input

Must contain a
system that supports

The game will
implement a points
system within which
the player gains points

Risk of there being
some method of
earning points too
easily in the game,

Func.Points

the user gaining
points

for avoiding enemies,
defeating enemies,
reaching safe areas
and winning
minigames

leading to users
achieving unusually
high scores

Must support at least
3 distinct playable
characters

We will implement a
number of characters
that differ from one
another in both the
values of their
attributes (Strength,
Speed, etc) and in
appearance

Assumes that the
different characters
are played on
separate runs of the
game. Doesn’t require
having all characters
be played at the same
time. Risk of making
characters too similar
to one another

Func.Char

Must support at least
6 distinct areas that
are identifiably from
the University of
York

We will have a number
of different areas in
the game that are both
major landmarks of the
university and
undeniably separate
places in reality

Assumes that the
locations can be
anything from the size
of a single room to an
entire building. Risk of
attempting to have too
many areas

Func.Area

Must contain
locations which are
classed as ‘safe
areas’

We will have some
areas which increase
the difficulty of the
game and grant points
when reached. These
areas must be totally
safe and failure of the
game must be
impossible in these
areas.

Assumes that most
places will be, by
default, dangerous
areas and there will
only be a few safe
areas. Risk of having
either too few or too
many safe areas, or
changing difficulty too
much, ruining
balancing

Func.Safe

Must contain at least
1 minigame

We will implement at
least 1 game within
the main game that is
functionally distinct
from the main game
and undeniably shorter

Risk of spending too
much time making an
over-complicated
minigame.

Func.Mini

Must contain at least
2 boss enemies

Will contain at least 2
enemies in the game
that are distinctly more
difficult to combat than
other enemies in the
game and also visibly
different from other
enemies

Assumes that bosses
must be more difficult
and not just visibly
different. Risk of
making a boss enemy
impossible to beat,
making the game
impossible

Func.Boss

Must contain at least
2 varieties of non-
boss enemy

Will contain at least 2
enemies that are not
as difficult as ‘boss
enemies’ but are still
distinct from one
another

Assumes that the
difference must be
both graphical and
functional. Risk of
trying to make too
many varieties

Func.Vary

Must contain at least
a total of 5 powerups
and powerdowns

Will contain at least 5
powerups and
powerdowns that are
distinct from one
another in what they

Assumes that anything
that helps the player
can be deemed a
powerup and anything
that hinders the player
can be deemed a
powerdown. Risk of

Func.Powers

do to help or hinder
the user

making a powerup that
is too beneficial,
making the game too
easy

Non-functional Requirements:

Description

Fit Criterion

Environmental
Assumptions and
Risks

Reference No.

Must be enjoyable by
SEPR cohort

The game will be
tested on the SEPR
cohort during
development to ensure
both proper balancing
of game difficulty and
enjoyability of
gameplay

Risk of relying on
SEPR cohort feedback
too much, leading to
the game becoming
generic as a result of
trying to please
everyone

Non.Enjoy

Must be playable by
SEPR cohort and
easy enough to learn
to play

The game will be
tested on the SEPR
cohort to ensure that
the game’s controls
are not too
complicated and the
UI conveys the
information the player
needs appropriately

Assumes SEPR cohort
are all confident at
using computer mice
and keyboards as the
mode of input. Risk of
making game too
basic.

Non.Play

Must run at 60
frames-per-second

Game will be tested on
the Computer Science
department computers
regularly to ensure
they can run the game
at 60 FPS

Assumes the
computers at the
Computer Science
department are
roughly equally
powerful

Non.FPS

Constraints:

Description

Fit Criterion

Environmental
Assumptions and
Risks

Reference No.

Must have at least
one area in the game
that is suitable to be
displayed to
prospective students
at University open
days

We will have an initial
tutorial area that
serves as a completely
‘PG’ area that can be
shown to any and all
prospective students.

Assumes that the
restrictions on this
area are inappropriate
humour, gore, sexual
references and drug
references. Risk of
failing to ensure area
is ‘PG’.

Con.PG

Must be zombie-
themed

The game will be
shown to both the
customer and the
SEPR cohort regularly
to ensure the
requirement of a
zombie theme is met

Risk of the game
focusing so much on
having a zombie-
theme that it becomes
a generic zombie
game

Con.Theme

Must be able to run
on the University of
York Computer
Science Department
computers

The system will be
tested regularly on
those computers to
ensure they are
capable of running the
system

Assumes that the
computers will be
running Windows 10
during the
presentation of the
final product. Risk of
testing of system not

Con.Run

being thorough
enough.

Must be programmed
in Java

In order to ensure this,
the system will be
created using the
Java-based game
library LibGDX

Assumes that no part
of the system can use
a different
programming
language.

Con.Java

Must be able to be
sold

In order to ensure this,
we will avoid the use
of any open-source
software or anything
else that could cause
licensing issues.

Assumes that, as the
department won’t
actually sell the game,
referential humour will
still be acceptable in
the final product.

Con.Sell

Bibliography

[1] The Standish Group, "The CHAOS Report(1994)," The Standish Group International, Inc., Boston,

MA, 1995.

[2] J. Dick, E. Hull and K. Jackson, "Structuring Requirements Documents," in Requirements

Engineering, Cham, Switzerland, Springer, 2017, pp. 94-96.

